Calculates sample size or power for a two-sample mean test.
Usage
two_mean_size(
muA,
muB,
delta = NULL,
kappa = 1,
sd = NULL,
sdA = NULL,
sdB = NULL,
alpha,
beta = NULL,
nA = NULL,
nB = NULL,
test_type = "2-side"
)
Arguments
- muA
Numeric. True mean of group A.
- muB
Numeric. True mean of group B.
- delta
Numeric (optional). Margin for
"non-inferiority"
or"equivalence test"
. Required for"non-inferiority"
or"equivalence"
test.- kappa
Numeric. Ratio of sample sizes (nA/nB). Default is 1.
- sd
Numeric (optional). Standard deviation. Required for
"2-side"
,"non-inferiority"
or"equivalence"
test.- sdA
Numeric (optional). Standard deviation of group A. Required for
"1-side"
test.- sdB
Numeric (optional). Standard deviation of group B. Required for
"1-side"
test.- alpha
Numeric. Type I error rate.
- beta
Numeric (optional). Type II error rate. Required for sample size calculation.
- nA
Integer (optional). Sample size for group A. Required for power calculation of
"1-side"
test.- nB
Integer (optional). Sample size for group B. Required for power calculation of
"2-side"
,"non-inferiority"
or"equivalence"
test.- test_type
Character.
"2-side"
,"1-side"
,"non-inferiority"
, or"equivalence"
. Default is"2-side"
.
Note
Only one of beta
(for sample size calculation) or nA
/nB
(for power calculation) should be specified.
Required arguments by test_type
:
"2-side"
:For sample size:
muA
,muB
,sd
,alpha
,beta
For power:
muA
,muB
,sd
,alpha
,nB
"1-side"
:For sample size:
muA
,muB
,sdA
,sdB
,alpha
,beta
For power:
muA
,muB
,sdA
,sdB
,alpha
,nA
"non-inferiority"
/"equivalence"
:For sample size:
muA
,muB
,delta
,sd
,alpha
,beta
For power:
muA
,muB
,delta
,sd
,alpha
,nB
Examples
# Sample size for `"2-side"` test
two_mean_size(muA = 5, muB = 10, kappa = 1, sd = 10,
alpha = 0.05, beta = 0.2, test_type = "2-side")
#> [1] 63
# Power of `"2-side"` test
two_mean_size(muA = 5, muB = 10, kappa = 1, sd = 10,
alpha = 0.05, nB = 63, test_type = "2-side")
#> [1] 0.8013024
# Sample size for `"1-side"` test
two_mean_size(muA = 132.86, muB = 127.44, kappa = 2, sdA = 15.34, sdB = 18.23,
alpha = 0.05, beta = 0.2, test_type = "1-side")
#> [1] 85
# Power of `"1-sided"` test
two_mean_size(muA = 132.86, muB = 127.44, kappa = 2, sdA = 15.34, sdB = 18.23,
alpha = 0.05, nA = 85, test_type = "1-side")
#> [1] 0.8020669
# Sample size for `"non-inferiority"` test
two_mean_size(muA = 5, muB = 5, delta = 5, kappa = 1, sd = 10,
alpha = 0.05, beta = 0.2, test_type = "non-inferiority")
#> [1] 50
# Power of `"non-inferiority"` test
two_mean_size(muA = 5, muB = 5, delta = 5, kappa = 1, sd = 10,
alpha = 0.05, nB = 50, test_type = "non-inferiority")
#> [1] 0.8037819
# Sample size for `"equivalence"` test
two_mean_size(muA = 5, muB = 4, delta = 5, kappa = 1, sd = 10,
alpha = 0.05, beta = 0.2, test_type = "equivalence")
#> [1] 108
# Power of `"equivalence"` test
two_mean_size(muA = 5, muB = 4, delta = 5, kappa = 1, sd = 10,
alpha = 0.05, nB = 108, test_type = "equivalence")
#> [1] 0.8045235